The analysis of a plane wave pseudopotential density functional theory code on a GPU machine

نویسندگان

  • Weile Jia
  • Zongyan Cao
  • Long Wang
  • Jiyun Fu
  • Xuebin Chi
  • Weiguo Gao
  • Lin-Wang Wang
چکیده

Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used material science simulation, and the PWP DFT codes are arguably the most important material science codes. We have implemented a PWP DFT code PEtot on a multi-node GPU machine. Starting from a previous work, we have further improved the speed of the code, and achieved x13-x22 speedups over the CPU calculations for a typical 512 atom system. Such speedups are much higher than other similar works for this important class of material simulation codes on GPU clusters. The current achievement is obtained by (1) moving the calculation fully into the GPU; (2) adopting a new algorithm to reduce the data amount for MPI communication; and (3) using new GPU and CPU numerical libraries. We have also provided a detail quantitative analysis of the computational times for different physical systems and number of GPU units, which helps one to understand the challenges and bottlenecks of the PWP DFT simulations on GPU machines. Based on the analysis, we listed the machine and library requirements in order to further improve the performances of the PWP DFT calculations. © 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plane-wave Pseuclopotential Density Functional Theory periodic Slab Calculations of NO Adsorption on Co(111) Surface

Plane-wave pseudopotential Density Functional Theory (OFT) periodic slab calculations were performed usingthe giteralized gradient approximation (GHA) to investigate the adsorption of nitric oxide(NO) on the (I II)surface of Cu. Copper rface was stimulated using th P 'odic Slab Method consisting of Five atomic Layers.Four different adsorption saes (Atop. Bridge, RCP Hollow, and FCC Hollow) were...

متن کامل

Investigation of phononic and thermal properties of InP by using pseudopotential method (Research Article)

In this paper, according to the  density functional theory and semiharmonic approximation and solving kohen's equations using plane wave, band structure, phonon scattering; Dielectric tensor, Bourne effective charge, Raman cross-section; We calculated the infrared and specific heat capacity of indium phosphide in two-phase structures on zincblend (ZB) and salt rock (Rs). The results show that t...

متن کامل

خواص ساختاری و پاشندگی فونونها در بلورNaCI

  Although many phenomena in condensed matter Physics can be understood on the basis of a model, there are also considerable number of physical properties of solid which can not be explained except in the framework of lattice dynamics.   We have calculated the phonon frequencies of Na Cl, using an approach which is a combination of frozen phonon and force constants methods in the framework of d...

متن کامل

Nonorthogonal generalized Wannier function pseudopotential plane-wave method

We present a reformulation of the plane-wave pseudopotential method for insulators. This new approach allows us to perform density-functional calculations by solving directly for ‘‘nonorthogonal generalized Wannier functions’’ rather than extended Bloch states. We outline the theory on which our method is based and present test calculations on a variety of systems. Comparison of our results wit...

متن کامل

First-Principles Study of Structure, Electronic and Optical Properties of HgSe in Zinc Blende (B3) Phase

In this paper, the structural parameters, energy bands structure, density ofstates and charge density of HgSe in the Zincblende(B3) phase have been investigated.The calculations have been performed using the Pseudopotential method in theframework of density functional theory (DFT) by Quantum Espresso package. Theresults for the electronic density of states (DOS) show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 184  شماره 

صفحات  -

تاریخ انتشار 2013